Nonlinear Opt.: Gold section search 3: Unterschied zwischen den Versionen

Aus Operations-Research-Wiki
Wechseln zu: Navigation, Suche
[unmarkierte Version][unmarkierte Version]
Zeile 35: Zeile 35:
  
 
If b<sub>k</sub> – a<sub>k</sub> < ε, then STOP.
 
If b<sub>k</sub> – a<sub>k</sub> < ε, then STOP.
 +
  
 
''Step 2:'' Compare the distance with the termination tolerance. If the distance is greater than the termination tolerance, continue with the following two cases:
 
''Step 2:'' Compare the distance with the termination tolerance. If the distance is greater than the termination tolerance, continue with the following two cases:
Zeile 45: Zeile 46:
 
       µ<sub>k+1</sub> := a<sub>k+1</sub> + δ * (b<sub>k+1</sub> – a<sub>k+1</sub>),  
 
       µ<sub>k+1</sub> := a<sub>k+1</sub> + δ * (b<sub>k+1</sub> – a<sub>k+1</sub>),  
 
       f(λ<sub>k+1</sub>) := f(µ<sub>k</sub>),  
 
       f(λ<sub>k+1</sub>) := f(µ<sub>k</sub>),  
       and compute f(µ<sub>k+1</sub>).
+
       and compute f(µ<sub>k+1</sub>)
 +
 
 +
the interval will be diminished from the right side
  
 
Case b)
 
Case b)
Zeile 56: Zeile 59:
 
       compute f(λ<sub>k+1</sub>)
 
       compute f(λ<sub>k+1</sub>)
 
       set k = k+1, go to Step 1.
 
       set k = k+1, go to Step 1.
 +
 +
the interval will be diminished from the left side
 +
  
 
The result is:
 
The result is:
[[Datei:Golden_Section_Search.png|500px|thumb|left|figure 1: interval demonstration of the two possibilities]]
+
 
 +
[[Datei:Golden_Section_Search.png]]
 +
 
 +
figure 1: interval demonstration of the two possibilities
 +
                       
 +
 
 +
 
 +
 
 +
== Example for maximum ==
 +
 
 +
<math>max  f(x)= -(x^{2})+ 4x + 2 </math> where x ϵ <math>\mathbb{R}</math> on interval [0, 5], termination tolerance ε = 0,8
 +
 
 +
 
 +
''Step 0:''
 +
 
 +
a<sub>0</sub> and b<sub>0</sub> are the margins of the interval
 +
 
 +
        a<sub>0</sub> := 0 ; b<sub>0</sub> := 5
 +
 
 +
k represents the iteration steps
 +
 
 +
        k := 0
 +
 
 +
Compute λ<sub>k</sub> with the formula:
 +
 
 +
        λ<sub>k</sub> := a<sub>k</sub> + (1 – δ) * (b<sub>k</sub> – a<sub>k</sub>)
 +
        λ<sub>0</sub> := 0 + (1 – 0,618) * (5 – 0)
 +
        => λ<sub>0</sub> = 1,91
 +
 
 +
and then µ<sub>0</sub> with the formula: 
 +
 
 +
        µ<sub>k</sub> := a<sub>k</sub> + δ * (b<sub>k</sub> – a<sub>k</sub>)
 +
        µ<sub>0</sub> := 0 + 0,618 * (5 – 0)
 +
        => µ<sub>0</sub> = 3,09
 +
 
 +
 
 +
λ<sub>0</sub> := 0 + (1 – 0,618) * (5 – 0) => λ<sub>0</sub> = 1,91
 +
 
 +
µ<sub>0</sub> := 0 + 0,618 * (5 – 0) => µ<sub>0</sub> = 3,09
 +
 
 +
Afterwards we compute λ<sub>k</sub> and µ<sub>0</sub> we insert, in succession, λ<sub>0</sub> and µ<sub>0</sub> in the start function f(x) to get a result for f(λ<sub>0</sub>) and f(µ<sub>0</sub>).
 +
       
 +
        <math>f(\lambda _{0})= -(1,91 ^{2})+ 4 * 1,91  + 2 </math>
 +
        f(λ<sub>0</sub>) = 5,9919
 +
 
 +
        <math>f(\mu _{0})= -(3,09 ^{2})+ 4 * 3,09  + 2</math>
 +
        f(µ<sub>0</sub>) = 4,8119

Version vom 26. Juni 2013, 13:59 Uhr

Index of contents

1. Theory

2. Mathematical formulation

3. Example for maximum

4. Sources


Theory

Golden section search is a part of unconstrained nonlinear optimization for strictly unimodal functions. This method is used to find a minimum or maximum by narrowing values in a specific interval. The extrema exists in the range. Based on the unimodal function, we assume that the local extrema is simultaneously the global extrema. In this method we do not use derivation, but rather a "step-by-step" approximation to the extrema.


Mathematical formulation (for maximum)

The method of the golden section search has the function Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f:\mathbb{R}^{n} \supseteq X \rightarrow \mathbb{R}^{n}

based on an interval (a0,b0), where “a” is smaller than ”b”. A termination tolerance of ε is given, with the objective ε to compare the distance between “a” and “b” in each iteration. Through each iteration, the interval will be diminished by the factor λ, which is given with the value 0,618. λ will be cut from the bigger part of the interval. k = n represents the iteration steps.


Step 0: Initialization

Set a0 := a, b0:= b, k := 0

       Calculate λk := ak + (1 – δ) * (bk – ak)
       and µk := ak + δ * (bk – ak)
       as well as f(λk) and f(µk)

Step1: Compare the distance with the termination tolerance. If the distance is smaller than the termination tolerance, stop the iteration, because the maximum has been reached.

If bk – ak < ε, then STOP.


Step 2: Compare the distance with the termination tolerance. If the distance is greater than the termination tolerance, continue with the following two cases:

Case a)

      If f(λk) < f(µk), 
      set ak+1 := λk,
      bk+1 := bk, 
      λk+1 := µk, 
      µk+1 := ak+1 + δ * (bk+1 – ak+1), 
      f(λk+1) := f(µk), 
      and compute f(µk+1)

the interval will be diminished from the right side

Case b)

      If f(λk) ≥ f(µk),
      set ak+1 := ak,
      bk+1 := µk,
      µk+1 := λk,
      λk+1 := ak+1 + (1 – δ) * (bk+1 – ak+1),
      f(µk+1) := f(λk),
      compute f(λk+1)
      set k = k+1, go to Step 1.

the interval will be diminished from the left side


The result is:

Fehler beim Erstellen des Vorschaubildes: Die Miniaturansicht konnte nicht am vorgesehenen Ort gespeichert werden

figure 1: interval demonstration of the two possibilities



Example for maximum

Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): max f(x)= -(x^{2})+ 4x + 2

where x ϵ  on interval [0, 5], termination tolerance ε = 0,8


Step 0:

a0 and b0 are the margins of the interval

        a0 := 0 ; b0 := 5 

k represents the iteration steps

        k := 0 

Compute λk with the formula:

        λk := ak + (1 – δ) * (bk – ak)
        λ0 := 0 + (1 – 0,618) * (5 – 0) 
        => λ0 = 1,91 

and then µ0 with the formula:

        µk := ak + δ * (bk – ak)
        µ0 := 0 + 0,618 * (5 – 0) 
        => µ0 = 3,09


λ0 := 0 + (1 – 0,618) * (5 – 0) => λ0 = 1,91

µ0 := 0 + 0,618 * (5 – 0) => µ0 = 3,09

Afterwards we compute λk and µ0 we insert, in succession, λ0 and µ0 in the start function f(x) to get a result for f(λ0) and f(µ0).

        Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f(\lambda _{0})= -(1,91 ^{2})+ 4 * 1,91  + 2 

        f(λ0) = 5,9919
        Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f(\mu _{0})= -(3,09 ^{2})+ 4 * 3,09  + 2
        f(µ0) = 4,8119