Nonlinear Opt.: Lagrangian condition 4: Unterschied zwischen den Versionen

Aus Operations-Research-Wiki
Wechseln zu: Navigation, Suche
[unmarkierte Version][unmarkierte Version]
(Example)
(Theory)
 
(6 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
 
== Theory ==
 
== Theory ==
  
The Lagrangian method is part of the non-linear optiization theory. It is used to solve an objective function with constraints. The application area of this mothed is very wide-ranging.  
+
The Lagrangian method is part of the non-linear optiization theory. It is used to solve an objective function with constraints. The application area of this methed is very wide-ranging.
  
 +
== Problem ==
  
 +
'''Objective function'''      <math>f(x_1,...,x_n)= min!  \quad  or \quad max!</math>
  
  
 +
'''subject to '''  <math>g_k(x_1,...,x_n) = c </math>  element R
  
== Problem ==
 
  
'''Objective function'''      <math>f(x_1,...,x_n)= min!  \quad  or \quad max!</math>
+
The objective function <math>f(x_1,...,x_n)</math> and <math>g_k(x_1,...,x_n)</math> must be continuosly differentiable!
  
 +
== Procedure ==
  
'''subject to '''  <math>g_k(x_1,...,x_n) = c </math> e element R
+
First you have to rewrite the constraints to the form of
  
  
The objective function <math>f(x_1,...,x_n)</math> and <math>g_k(x_1,...,x_n)</math> must be continuosly differentiable!
+
<math>g_k(x_1,...,x_n)-c = 0 </math>
  
  
== Procedure ==
+
<math>k=1,...,m</math>
  
First you have to rewrite the constraints to the form of <math>g_k(x_1,...,x_n)-c = 0 </math>
 
  
Then you set up the Lagrangian function: <math>L(x_1,...,x_n;\lambda_1,...,\lambda_k = f(x_1,...,x_n) +\lambda_1 g_1(x_1,...,x_n) +...+\lambda_k g_k(x_1,...,x_n</math>
 
  
 +
Then you set up the Lagrangian function:
  
Third you must derive the Lagrangian function with respect to all variables and set These derivatives to Zero .
 
  
<math>\frac{\partial}{\partial x_i}L(x_1,...,x_n; \lambda_1,...,\lambda_k = 0 </math>
+
<math>L(x_1,...,x_n;\lambda_1,...,\lambda_k) = f(x_1,...,x_n) +\lambda_1 g_1(x_1,...,x_n) +...+\lambda_m g_m(x_1,...,x_n)</math>
  
<math>\frac{\partial}{\partial \lambda_k}L(x_1,...,x_n;\lambda_1,...,\lambda_m</math>
 
  
  
Last you have to solve all the equations.
+
Third you must derive the Lagrangian function with respect to all variables and set these derivatives to zero .
  
  
 +
<math>\frac{\partial}{\partial x_i}L(x_1,...,x_n; \lambda_1,...,\lambda_m) = 0 </math> 
 +
 +
 +
<math>\frac{\partial}{\partial \lambda_k}L(x_1,...,x_n;\lambda_1,...,\lambda_m)= 0</math>
 +
 +
 +
<math>i=1,...,n</math>
 +
 +
<math>k=1...,m</math>
 +
 +
 +
Last you have to solve all the equations.
  
 
== Example ==
 
== Example ==
Zeile 42: Zeile 54:
  
  
'''First'''   <math>x_1+25x_2-500= 0</math>     
+
'''First'''
 +
 
 +
 
 +
 
 +
<math>x_1+25x_2-500= 0</math>     
 +
 
  
----
 
 
          
 
          
'''Second'''  <math>L=30x_1x_2+\lambda(500-x_1-25x_2)</math>
+
'''Second'''   
  
----
 
  
  
'''Third'''<math>\</math> <math> \frac{\partial L}{\partial x_1}
+
<math>L=30x_1x_2+\lambda(500-x_1-25x_2)</math>
=30x_2-\lambda=0</math><math>\\</math>
+
 
 +
 
 +
 
 +
'''Third'''
 +
 
 +
 
 +
<math> \frac{\partial L}{\partial x_1}
 +
=30x_2-\lambda=0</math>
 +
 
 +
 
 
<math> \frac{\partial L}{\partial x_2}
 
<math> \frac{\partial L}{\partial x_2}
=30x_1-25\lambda=0</math><math>\</math>
+
=30x_1-25\lambda=0</math>
 +
 
 
<math> \frac{\partial L}{\partial \lambda}=500-x_1-25x_2=0</math>
 
<math> \frac{\partial L}{\partial \lambda}=500-x_1-25x_2=0</math>
  
  
'''Fourth''' <math>\newline</math>
+
'''Fourth'''  
<math>30x_1=25\lambda(2)</math><math>\newline</math>
+
 
so <math>6/5x_1=\lambda</math><math>\newline</math>
+
 
<math>\\</math>
+
 
<math>x_2=20-x_1/25</math>
+
<math>30x_1=25\lambda(2)</math>
<math>\newline</math>
+
 
 +
 
 +
=> <nowiki></nowiki>   <math>6/5x_1=\lambda</math>
 +
 
 +
 
 +
<math>x_2=20-x_1/25</math>(3)
 +
 
 +
 
 +
<math>30x_2-\lambda=0</math>(1)
 +
 
 +
 
 +
=>  <math>30(20-x_1/25)-6/5x_1=0</math>
 +
 
 +
 
 +
=>  <math>600-6/5x_1-6/5x_1=0</math>
 +
 
 +
 
 +
=> <math>600-12/5x_1=0</math>
 +
 
 +
 
 +
=> <math>x_1=250</math>
 +
 
 +
 
 +
 
 +
== Sources ==
 +
 
 +
Kurt Meyberg, Peter Vachenauer Höhere Mathematik 1 (6. Auflage)
 +
 
 +
Hal R. Varian Intermediate Microeconomics (8th Edition)
 +
 
 +
Script of Operations Research
 +
 
 +
Hans Corsten, Ralf Gössinger Produktionswirtschaft; Einführung in das industrielle Produktionsmanagement(13. Auflage)

Aktuelle Version vom 6. Juli 2013, 10:47 Uhr

Theory

The Lagrangian method is part of the non-linear optiization theory. It is used to solve an objective function with constraints. The application area of this methed is very wide-ranging.

Problem

Objective function


subject to element R


The objective function and must be continuosly differentiable!

Procedure

First you have to rewrite the constraints to the form of


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): g_k(x_1,...,x_n)-c = 0



Then you set up the Lagrangian function:



Third you must derive the Lagrangian function with respect to all variables and set these derivatives to zero .


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): \frac{\partial}{\partial x_i}L(x_1,...,x_n; \lambda_1,...,\lambda_m) = 0


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): \frac{\partial}{\partial \lambda_k}L(x_1,...,x_n;\lambda_1,...,\lambda_m)= 0



Last you have to solve all the equations.

Example

Optimise the objective function subject to the constraint


First


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): x_1+25x_2-500= 0
    


Second


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): L=30x_1x_2+\lambda(500-x_1-25x_2)



Third


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): \frac{\partial L}{\partial x_1} =30x_2-\lambda=0


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): \frac{\partial L}{\partial x_2} =30x_1-25\lambda=0


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): \frac{\partial L}{\partial \lambda}=500-x_1-25x_2=0


Fourth



=>


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): x_2=20-x_1/25 (3)


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): 30x_2-\lambda=0 (1)


=> Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): 30(20-x_1/25)-6/5x_1=0


=> Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): 600-6/5x_1-6/5x_1=0


=> Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): 600-12/5x_1=0


=>


Sources

Kurt Meyberg, Peter Vachenauer Höhere Mathematik 1 (6. Auflage)

Hal R. Varian Intermediate Microeconomics (8th Edition)

Script of Operations Research

Hans Corsten, Ralf Gössinger Produktionswirtschaft; Einführung in das industrielle Produktionsmanagement(13. Auflage)