Nonlinear Opt.: Basic concepts 4: Unterschied zwischen den Versionen

Aus Operations-Research-Wiki
Wechseln zu: Navigation, Suche
[unmarkierte Version][unmarkierte Version]
(Theory)
(Nonlinear Optimaziation: Basic Concepts)
 
(11 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt)
Zeile 2: Zeile 2:
  
 
----
 
----
 
  
 
== Theory ==
 
== Theory ==
Zeile 9: Zeile 8:
  
 
A nonlinear problem also so called NLP, is similar to a linear program but it is created by the objective function,
 
A nonlinear problem also so called NLP, is similar to a linear program but it is created by the objective function,
general constraints and variable bounds. The significant difference from a NLP to a LP is that NLP includes minimum one nonlinear function.
 
  
 +
general constraints and variable bounds.
 +
The significant difference from a NLP to a LP is that NLP includes minimum one nonlinear function.
  
First we define what an optimal solution is. The function which is supposed to be minimized or maximized is (<math>)f(x), for x \epsilon \mathbb{R}^n(</math>)  called the objective function.
 
x* is an local minimum, if:
 
(<math>)[x^*\epsilon\,\mathbb{R}^n,\varepsilon > 0 ,\: f(x^*)\leq f(x)\, for\,all\,x\, \epsilon A (x^*; \varepsilon)](</math>)
 
And the global minimum, if:
 
(<math>) \[\inline \: f(x^*)\leq f(x)\, for\, all\, x\, \epsilon \, \mathbb{R}^n\] (</math>)
 
  
The problem can be stated simply as:
 
\[\inline x\,\epsilon\, X,\, max f(x)\,to\, maximize\, some\, variable\, such\, as\, product\, throughput\]
 
\[\inline x\,\epsilon\, X,\, min f(x)\,to\, minimize\, a\, cost\, function\, where\,\]
 
\[\inline f: R^n \rightarrow R\]
 
\[\inline x\, \epsilon\, R^n\]
 
subject to:
 
\[\inline h_i(x) = 0, \, i\,\epsilon \, I\, = 1, ..., p\]
 
  
\[\inline g_j(x)\,\leq \,0,\,j\,\epsilon \,J\,= 1,...,m\]
+
First we define what an optimal solution is.
  
== Example: ==
+
 
 +
The function which is supposed to be minimized or maximized is
 +
 
 +
<math>f(x), for x \epsilon \mathbb{R}^n</math>
 +
 
 +
 
 +
called the objective function.
 +
 
 +
 
 +
''x* is an local minimum, if:''
 +
 
 +
<math>x^*\epsilon\,\mathbb{R}^n,\varepsilon > 0</math>
 +
 
 +
<math>f(x^*)\leq f(x)\, for\,all\,x\, \epsilon A (x^*; \varepsilon)</math>
 +
 
 +
 
 +
An''d the global minimum, if:''
 +
 
 +
<math>f(x^*)\leq f(x)\, for\, all\, x\, \epsilon \, \mathbb{R}^n</math>
 +
 
 +
 
 +
 
 +
''Maximum is vice versa.''
 +
 
 +
 
 +
''The problem can be stated simply as:''
 +
 
 +
 
 +
<math> x\,\epsilon\, X\, max f(x)\, to\, maximize\, some\, variable\, such\, as\, product\, throughput\,x\,\epsilon\, X\, min f(x)\,to\, minimize\, a\, cost\, function\, where</math>
 +
 
 +
<math>f=R^n \rightarrow R\ x\, \epsilon\, R^n</math>
 +
 
 +
 
 +
''subject to:''
 +
 
 +
 
 +
<math>h_i(x) = 0, \, i\,\epsilon \, I\, = 1, ..., p</math>
 +
 
 +
<math>g_j(x)\,\leq \,0,\,j\,\epsilon \,J\,= 1,...,m</math>
 +
 
 +
== Example ==
  
 
----
 
----
  
The following set of NLP are genaral subroutines:
+
 
 +
'''The following set of NLP are genaral subroutines:'''
  
 
NLPCG Conjugate Gradient Method
 
NLPCG Conjugate Gradient Method
 +
 
NLPDD Double Dogleg Method
 
NLPDD Double Dogleg Method
 +
 
NLPNMS Nelder-Mead Simplex Method
 
NLPNMS Nelder-Mead Simplex Method
 +
 
NLPNRA Newton-Raphson Method
 
NLPNRA Newton-Raphson Method
 +
 
NLPNRR Newton-Raphson Ridge Method
 
NLPNRR Newton-Raphson Ridge Method
 +
 
NLPQN (Dual) Quasi-Newton Method
 
NLPQN (Dual) Quasi-Newton Method
 +
 
NLPQUA Quadratic Optimization Method
 
NLPQUA Quadratic Optimization Method
 +
 
NLPTR Trust-Region Method
 
NLPTR Trust-Region Method
The following subroutines are provided for solving nonlinear least-squares problems:
+
 
 +
 
 +
'''The following subroutines are provided for solving nonlinear least-squares problems:'''
 +
 
 
NLPLM Levenberg-Marquardt Least-Squares Method
 
NLPLM Levenberg-Marquardt Least-Squares Method
 +
 
NLPHQN Hybrid Quasi-Newton Least-Squares Methods
 
NLPHQN Hybrid Quasi-Newton Least-Squares Methods
  
  
'''Example 1:''' Simple NLP maximization
 
\[\inline f(x)= 3x-x^3 \Rightarrow max\]
 
First derivative:
 
\[\inline f'(x)= 3-3x^2 \Rightarrow 3-3x^2=0 \Rightarrow x_1 = +1, \, x_2= -1\,\]
 
Second derivative:
 
\[\inline f''(x)= -6 \Rightarrow -6< 0 \Rightarrow max\: (local maximum)\]
 
'''
 
Example 2:''' NLP Gradient Method
 
  
First we need to find the gradient:
+
'''Example 1:'''
\[\inline f(x,y,z)= 6x^2 +2y^2+2z^2 \:\rightarrow \triangledown_f (6x^2 +2y+2z)=\left \{ 6x,\, 2y,\, 2z \right \}\]
+
  
Gradient has to equal 0:
 
\triangledown  f(x)=0
 
\[\inline \left \{ 6x,\, 2y,\, 2z \right \}= 0\]
 
  
Now we get the Hesse-Matrix by the derivative once again:
+
'''Simple NLP maximization'''
\triangledown^2_f = (6, 2, 2)
+
  
Solve for example with Rule of SARRUS:
 
  
\[\inline a_1_,_2=2, \, a_3=6;\: a_1_,_2_,_3> 0 \Rightarrow global\, minimum\, at\, (0,0,0)\]
+
<math>f(x)= 3x-x^3 \Rightarrow max</math>
  
  
  
 +
''First derivative:''
  
  
 +
<math>f'(x)= 3-3x^2 \Rightarrow 3-3x^2=0 \Rightarrow x_1 = +1, \, x_2= -1</math>
  
  
  
 +
''Second derivative:''
  
  
 +
<math>f''(x)= -6 \Rightarrow -6< 0 \Rightarrow max (local maximum)</math>
  
 +
[[Datei:Screen Shot 2013-07-01 at 2.02.47 PM.png]]
  
  
 +
 +
'''Example 2:'''
 +
 +
 +
'''NLP Gradient Method'''
 +
 +
 +
''First we need to find the gradient:''
 +
 +
 +
<math>f(x,y,z)= 6x^2 +2y^2+2z^2 \rightarrow \triangledown_f (6x^2 +2y+2z)=\left \{ 6x,\, 2y,\, 2z \right \}</math>
 +
 +
 +
 +
''Gradient has to equal 0:''
 +
 +
 +
<math>\triangledown  f(x)=0 \rightarrow
 +
\left \{ 6x,\, 2y,\, 2z \right \}= 0</math>
 +
 +
 +
 +
''Now we get the Hesse-Matrix by the derivative once again:''
 +
 +
 +
<math>\triangledown^2_f = (6, 2, 2)</math>
 +
 +
 +
 +
''Solve for example with Rule of SARRUS:''
 +
 +
 +
<math>a_1=2, a_2=2, a_3=6; a_1, a_2, a_3 > 0 </math>
 +
 +
 +
<math>\Rightarrow\, global\, minimum\, at\, (0,0,0)</math>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
'''Sources:'''
 +
 +
----
  
  
Surces:
 
 
http://ciser.cornell.edu/sasdoc/saspdf/iml/chap11.pdf
 
http://ciser.cornell.edu/sasdoc/saspdf/iml/chap11.pdf
www.wikipedia.org/nonlinear_programming
+
 
www.sce.carleton.ca/faculty/chinneck/po/Chapter%2016.pdf
+
http://www.wikipedia.org/nonlinear_programming
 +
 
 +
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter%2016.pdf
 +
 
 +
http://www.wolframalpha.com

Aktuelle Version vom 8. Juli 2013, 00:09 Uhr

Nonlinear Optimaziation: Basic Concepts


Theory


A nonlinear problem also so called NLP, is similar to a linear program but it is created by the objective function,

general constraints and variable bounds. The significant difference from a NLP to a LP is that NLP includes minimum one nonlinear function.


First we define what an optimal solution is.


The function which is supposed to be minimized or maximized is


called the objective function.


x* is an local minimum, if:

Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): x^*\epsilon\,\mathbb{R}^n,\varepsilon > 0


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f(x^*)\leq f(x)\, for\,all\,x\, \epsilon A (x^*; \varepsilon)


And the global minimum, if:

Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f(x^*)\leq f(x)\, for\, all\, x\, \epsilon \, \mathbb{R}^n



Maximum is vice versa.


The problem can be stated simply as:


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f=R^n \rightarrow R\ x\, \epsilon\, R^n


subject to:


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): g_j(x)\,\leq \,0,\,j\,\epsilon \,J\,= 1,...,m


Example



The following set of NLP are genaral subroutines:

NLPCG Conjugate Gradient Method

NLPDD Double Dogleg Method

NLPNMS Nelder-Mead Simplex Method

NLPNRA Newton-Raphson Method

NLPNRR Newton-Raphson Ridge Method

NLPQN (Dual) Quasi-Newton Method

NLPQUA Quadratic Optimization Method

NLPTR Trust-Region Method


The following subroutines are provided for solving nonlinear least-squares problems:

NLPLM Levenberg-Marquardt Least-Squares Method

NLPHQN Hybrid Quasi-Newton Least-Squares Methods


Example 1:


Simple NLP maximization


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f(x)= 3x-x^3 \Rightarrow max



First derivative:


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f'(x)= 3-3x^2 \Rightarrow 3-3x^2=0 \Rightarrow x_1 = +1, \, x_2= -1



Second derivative:


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f''(x)= -6 \Rightarrow -6< 0 \Rightarrow max (local maximum)


Fehler beim Erstellen des Vorschaubildes: Die Miniaturansicht konnte nicht am vorgesehenen Ort gespeichert werden


Example 2:


NLP Gradient Method


First we need to find the gradient:


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): f(x,y,z)= 6x^2 +2y^2+2z^2 \rightarrow \triangledown_f (6x^2 +2y+2z)=\left \{ 6x,\, 2y,\, 2z \right \}



Gradient has to equal 0:


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): \triangledown f(x)=0 \rightarrow \left \{ 6x,\, 2y,\, 2z \right \}= 0



Now we get the Hesse-Matrix by the derivative once again:


Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): \triangledown^2_f = (6, 2, 2)



Solve for example with Rule of SARRUS:



Fehler beim Parsen (http://mathoid.testme.wmflabs.org Serverantwort ist ungültiges JSON.): \Rightarrow\, global\, minimum\, at\, (0,0,0)







Sources:



http://ciser.cornell.edu/sasdoc/saspdf/iml/chap11.pdf

http://www.wikipedia.org/nonlinear_programming

http://www.sce.carleton.ca/faculty/chinneck/po/Chapter%2016.pdf

http://www.wolframalpha.com